Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Environ Virol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294673

RESUMO

SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (n = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5-2 log, i.e., 96-99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5-1 log, i.e., 68-90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2-1.9 log, i.e., 94-98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2-3 log, i.e., 99-99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.

2.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627980

RESUMO

Sodium hypochlorite (NaOCl) and peracetic acid (PAA) are commonly used disinfectants with a maximum recommended concentration of 200 ppm for food-contact surfaces. The objectives of this study were to assess the effect of pH and water hardness on NaOCl and PAA efficacy against SARS-CoV-2 on stainless steel (SS). The two disinfectants were prepared at 200 ppm in water of hardness 150 or 300 ppm with the final pH adjusted to 5, 6, 7, or 8. Disinfectants were applied to virus-contaminated SS for one minute at room temperature following the ASTM E2197 standard assay. SARS-CoV-2 infectivity was quantified using TCID50 assay on Vero-E6 cells. In general, increasingly hard water decreased the efficacy of NaOCl while increasing the efficacy of PAA. Hard water at 300 ppm significantly increased virus log reduction with PAA at pH 8 by ~1.5 log. The maximum virus log reductions were observed at pH 5 for both NaOCl (~1.2 log) and PAA (~2 log) at 150 and 300 ppm hard water, respectively. In conclusion, PAA performed significantly better than NaOCl with harder water. However, both disinfectants at 200 ppm and one minute were not effective (≤3 log) against SARS-CoV-2 on contaminated food-contact surfaces, which may facilitate the role of these surfaces in virus transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...